Efficiently Enforcing Diversity in Multi-Output Structured Prediction
نویسندگان
چکیده
This paper proposes a novel method for efficiently generating multiple diverse predictions for structured prediction problems. Existing methods like SDPPs or DivMBest work by making a series of predictions where each prediction is made after considering the predictions that came before it. Such approaches are inherently sequential and computationally expensive. In contrast, our method, Diverse Multiple Choice Learning, learns a set of models to make multiple independent, yet diverse, predictions at testtime. We achieve this by including a diversity encouraging term in the loss function used for training the models. This approach encourages diversity in the predictions while preserving computational efficiency at test-time. Experimental results on a number of challenging problems show that our method learns models that not only predict more diverse results than competing methods, but are also able to generalize better and produce results with high test accuracy.
منابع مشابه
Learning Structured Output Representation using Deep Conditional Generative Models
Supervised deep learning has been successfully applied to many recognition problems. Although it can approximate a complex many-to-one function well when a large amount of training data is provided, it is still challenging to model complex structured output representations that effectively perform probabilistic inference and make diverse predictions. In this work, we develop a deep conditional ...
متن کاملLearning to Predict Combinatorial Structures
The major challenge in designing a discriminative learning algorithm for predicting structured data is to address the computational issues arising from the exponential size of the output space. Existing algorithms make different assumptions to ensure efficient, polynomial time estimation of model parameters. For several combinatorial structures, including cycles, partially ordered sets, permuta...
متن کاملLearning to predict combinatorial structures
The major challenge in designing a discriminative learning algorithm for predicting structured data is to address the computational issues arising from the exponential size of the output space. Existing algorithms make different assumptions to ensure efficient, polynomial time estimation of model parameters. For several combinatorial structures, including cycles, partially ordered sets, permuta...
متن کاملEmbedding Inference for Structured Multilabel Prediction
A key bottleneck in structured output prediction is the need for inference during training and testing, usually requiring some form of dynamic programming. Rather than using approximate inference or tailoring a specialized inference method for a particular structure—standard responses to the scaling challenge— we propose to embed prediction constraints directly into the learned representation. ...
متن کاملMulti-View Forests of Tree-Structured Radial Basis Function Networks Based on Dempster-Shafer Evidence Theory
An essential requirement to create an accurate classifier ensemble is the diversity among the individual base classifiers. In this paper, Multi-View Forests, a method to construct ensembles of tree-structured radial basis function (RBF) networks using multi-view learning is proposed. In Multi-view learning it is assumed that the patterns to be classified are described by multiple feature sets (...
متن کامل